问答库>考研试题
2018年青岛理工大学土木工程学院802材料力学考研基础五套测试题
一、解答题
1.
一边长为切应力及全应力。
的立方块进行压缩试验,当压力
时,立方块沿着由三个相互
垂直面上对角线所构成的平面发生破坏,如图(a )所示。试求在破坏前瞬时该斜面上的正应力、
图
【答案】应用截面法,截取四面体如图(b )所示。设斜截面面积为轴的夹角分别为故有
。由于该截面法线与
,斜截面法线
与
轴的夹角相等,而
由力的平衡条件得
所以,全应力
正应力
第 2 页,共 72 页
切应力
全应力及应力分量的方向如图(b )所示。
2. 图所示梁AB 的抗弯刚度为EI , BC 为刚性杆,B 处为刚结点,弹簧系数为K 。求梁B 截面的弯矩。
图
【答案】架设B 截面的弯矩为M e ,运用叠加原理可以求B 截面的转角。 只在力F 作用下,所以B 截面的转角
,只在Me 作用下,
B 截面的转角产生C 截面的位移
B 截面处的弯矩是由弹簧弹力产生的,即
3. 利用叠加法求图1所示梁C 截面的挠度
。己知梁的抗弯刚度为EI 。
图1
第 3 页,共 72 页
图2
【答案】将原荷载看成为图2(a )、(b )两种荷载的组合。 而图2(a )又可分解为图2(c )和(d )所示情形。
对于图2(c ),由于结构和载荷关于C 截面的对称性,可知其挠曲线完全对称。由此可得,C 点的转角:
=0。对于图2(d ),由于荷载关于C 截面的反对称性,可知其挠曲线关于C 截面反
。
对称。由此可得,C 点的挠度:
而图2(b )又可分解为图2(e )和(f )所示情形。
对于图2(f ),由于荷载关于C 截面的反对称性,可知其挠曲线关于C 截面反对称。由此可得,C 点的挠度:
。对于图2(e ),由于结构和荷载关于C 截面的对称性,可知其挠曲线完全
=0。此时,如果将坐标原点平移到变形后的c 截面位置,则可认
对称。由此可得C 点的转角:原来C 截面的挠度为
并且
对于图2(g ),其又可以分解为图2(h )和图2(i )两种情形,因此有
最后,由叠加原理可得
第 4 页,共 72 页
为其y 方向的位移为零。因此,可以将其看成 是一固定端,如图2(g )所示。